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Introduction 

•  Demanding efficiency requirements are driving engineers to the 
LLC resonant converter 

•  How do we identify and verify a robust set of compensation values 
for this converter? 

80 PLUS 
Certification 

115 V Internal  
Non-Redundant 230 V Internal Redundant 

% of Rated Load 10% 20% 50% 100% 10% 20% 50% 100% 
80 PLUS – 80% 80% 80% N/A 

80 PLUS Bronze – 82% 85% 82% – 81% 85% 81% 
80 PLUS Silver – 85% 88% 85% – 85% 89% 85% 
80 PLUS Gold – 87% 90% 87% – 88% 92% 88% 

80 PLUS Platinum – 90% 92% 89% – 90% 94% 91% 
80 PLUS Titanium – – – – 90% 94% 96% 91%  

Courtesy: http://www.plugloadsolutions.com/80PlusPowerSupplies.aspx 
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Discussion Outline 

•  LLC Converter  
•  Modeling Process 
•  Case Study 
•  Tools 
•  Practical Limitations 
•  Conclusion 



Operating States 
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State Q1 Q2 Q3 Q4 
1 ON OFF OFF ON 
2 ON OFF ON OFF 
3 ON OFF OFF OFF 
4 OFF ON OFF ON 
5 OFF ON ON OFF 
6 OFF ON OFF OFF 

State 
Variables 

ILR(t) 

ILM(t) 

VCR(t) 

VCO(t) 
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Mode: Resonance 
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State Q1 Q2 Q3 Q4 
1 ON OFF OFF ON 
2 ON OFF ON OFF 
3 ON OFF OFF OFF 
4 OFF ON OFF ON 
5 OFF ON ON OFF 
6 OFF ON OFF OFF 

Mode State Sequence: 1→5 
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Mode: Below Resonance 

State Q1 Q2 Q3 Q4 
1 ON OFF OFF ON 
2 ON OFF ON OFF 
3 ON OFF OFF OFF 
4 OFF ON OFF ON 
5 OFF ON ON OFF 
6 OFF ON OFF OFF 

Mode State Sequence: 1→3→5→6 
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Mode: Resonance 

State Q1 Q2 Q3 Q4 
1 ON OFF OFF ON 
2 ON OFF ON OFF 
3 ON OFF OFF OFF 
4 OFF ON OFF ON 
5 OFF ON ON OFF 
6 OFF ON OFF OFF 

Mode State Sequence: 1→4→5→2 
 



Modeling Process Overview 
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Fundamental Steps 
1.  Identify the states and 

modes used 
2.  Average the states for 

the identified mode 
3.  Calculate DC operating 

point 
4.  Linearize the result 

Controller
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Fourier Series 
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State Variable Harmonic’s Included 
ILR(t) 1, 3, 5, 7, 9, 11 
ILM(t) 1, 3, 5, 7 
VCR(t) 0, 1, 3, 5, 7 

VCOUT
(t) 0 
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Linearization 
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Describing Function Analysis 

Control

Effort

LLC Power Stage

f(x(t), u(t),t)
Output

•  Linear System 

•  Non-Linear System 

Fsk

ss = 2
Ts

⋅ (AiTi−1

Ti∫
i=1

Q

∑ ⋅x(t)ss + Bi ⋅U0 ) ⋅sin(k ⋅ωs ⋅ t) ⋅dt

xss(t) = X0
ss + Xck

ss ⋅cos(k ⋅ωs ⋅ t)+ Xck
ss ⋅sin(k ⋅ωs ⋅ t)( )

k=1

∞

∑

Fck

ss  = 2
Ts

⋅ (AiTi−1

Ti∫
i=1

Q

∑ ⋅x(t)ss + Bi ⋅U0 ) ⋅cos(k ⋅ωs ⋅ t) ⋅dt

 

− x(t) = A ⋅x(t) + B⋅u(t)
− y(t) = C ⋅x(t) + D ⋅u(t)

 

− x(t) = f(x(t) + u(t),t)
− y(t) = g(x(t) + u(t),t)
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Steady State Operating Point 

•  LLC + COUT                  fourth order system 

•  Piecewise linear simulation: 

– 

– 

•  Lightning fast, highly accurate results 

⇒

 

xn(t) = A ⋅xn(t)+B⋅U

xn(ti ) = (e
A⋅Δt − I) ⋅A−1 ⋅B⋅U + eA⋅Δt ⋅xn(ti−1)



LLC Small Signal ModelLLC Small Signal Model
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Model vs. Circuit Simulation Model vs. Measurement 
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Compensation Objectives 

•  Stability 
–  How do we achieve stability? 
–  How do we ensure that we have sufficient stability 

margin for all operating points? 

•  Performance 
–  Reference tracking 
–  Load transient response 
–  Input voltage transient rejection 
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Plant Analysis 

•  4TH order system, 
2ND order response 
-  G0 ~ 85 dB  
-  Q ~ 1.35 
-  fp ~ 4 kHz 

•  Stability Objectives 
-  Φm ≥ 45 ° 
-  gm ≥ 10 dB 

	  

Frequency (Hz)

P
h

a
s

e
 (

°
)

Plant Response

Phase

G
a

in
 (

d
B

)

90

80

70

60

50

180

135

90

45

0

-45

-90

-135

-180

10 100 1000 104

10 100 1000 104

Frequency (Hz)

Q

G0

fP



Compensation 
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•  1/s term is required to 
eliminate DC error 

•  2 zeros are required for 
stability 
-  QZ = 1.35 
-  fZ = 4 kHz 
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Overall Stability 
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•    

 

•  Stability Margins 
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Overall Stability with an Extra Pole 

7-19 Texas Instruments – 2014/15 Power Supply Design Seminar   

Frequency (Hz)

P
h

a
s
e
 (

°
)

Compensation

Phase

Compensation

Plant

Loop

G
a
in

 (
d

B
)

50

0

-50

180

135

90

45

0

-45

-90

-135

-180

10 100 1000 104

10 100 1000 104

Frequency (Hz)

gm
fbw

Om

  

•  Stability Margins 
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ZOUT(s), G0 = 9.5 dB 
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VOUT(s)/VIN(s), G0 = 9.5 dB 
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Load Variation 
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VIN Variation 
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Fusion Digital Power Designer 
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Time Domain Behavior 
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Limitations 

•  Low efficiency scenarios may need additional work to 
achieve proper correlation 

 
•  Does not support PWM or PSM 
 
•  Corner cases may exist which limit the accuracy due to 

numerical approximations 
 
•  Additional work may be required to ensure accuracy, 

especially at higher frequencies 
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Conclusions 

•  Analytical predictions of plant pole zero behavior enables 
more robust compensation 
–  Parameter variations 
–  Extreme operating conditions 
 

•  Independent validation of the DC operating point 
 
•  Instant visualization of: 

–  Key system waveforms 
–  Harmonic content 

 
•  Seamless integration with TI standard isolated digital 

controllers 
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Future Work 

•  DC operating point 
 
•  Performance metrics 

–  ZOUT(s) 
–  ZIN(s) 
–  VOUT(s)/VIN(s) 
 

•  Modulation methods 
–  FM 
–  PSM 
–  PWM 

•  Additional States & Modes 
–  Switching transitions 
–  Body diode conduction 
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