Guidelines for Choosing the Right Buck Regulator Control Strategy (Part B)

Brian Cheng Eric Lee Brian Lynch Robert Taylor

How Do You Choose?

- Part A
 - Buck regulator basics
 - Fixed frequency control

Part B

- Variable frequency control
 - Constant on-time
 - Adaptive on-time
- TI D-CAP™ families
 - D-CAP2[™]
 - D-CAP3™
 - D-CAP+TM
- Conclusions

Variable Frequency Control

Constant On-Time Control – Basic Operation

Adaptive On-Time Control – Frequency

COT Control – Transient Performance

- D-CAP[™] mode: direct output capacitor voltage feedback
- D-CAP[™] mode does not have an error amplifier or compensation

COT Control – Seamless DCM/CCM

• The DCM/CCM transition is happening naturally without a mode change

COT Control – High Efficiency @ Light Loads

TPS53219 + CSD86350

- Efficiency F_{SW} = 500 kHz, 12 V to 1.1 V
 - > 80% from 0.2 A to 25 A
 - > 55% efficiency in Skip mode at 10 mA

COT Control – External Components

VOUT

TI D-CAP[™] Control Architecture

• Adaptive constant on-time $T_{ON} = -$

$$V_{\rm ON} = \frac{V_{\rm OUT}}{V_{\rm IN}} \times K$$

• Ramp is generated to improve the jitter performance

COT Control – Ramp Compensation

- Ramp compensation improves jitter performance by reducing the noise band
- Ramp compensation is built-in to most TI D-CAP controllers

Texas Instruments – 2014/15 Power Supply Design Seminar

TI D-CAP[™] – Ripple Requirements

Without Series Resistor R_c

With Sufficient R_c

TI D-CAP[™] – Stability Measurement

- Conventional open-loop Bode plot measurement is not applied to COT control architecture since output is directly fed back to PWM modulator
- Closed-loop frequency measurement used to indicate stability issue
- Due to inherent load feed-forward capability, bandwidth measured from small-signal analyses will not indicate large-signal load transient performance

TI D-CAP2[™] Control Architecture

- Adaptive constant on-time $T_{ON} = \frac{V_{OUT}}{V_{IN}} \times K$
- Ripple injection is added to D-CAP2[™]
- This allows stability with low output ripple and ceramic output capacitors

TI D-CAP2[™] – Output Accuracy in DCM/CCM

- Under deep DCM: $V_{FB} \cong V_{REF}$

Offset is not constant in CCM and DCM

TI D-CAP2[™] – Duty Cycle Dependency

- Fixed $R_{C1}C_{C1}$ time constant = 30 µs for both outputs
- Transient performance is very different with different duty cycles

TI D-CAP3[™] Control Architecture

- All of the benefits of D-CAP2™
- Adaptive ripple algorithm changes $R_{C1}C_{C1}$ time constant with V_{IN} , V_{OUT} and I_{OUT}
- Sample and hold circuit improves DC accuracy

TI D-CAP3[™] – V_{OUT} Accuracy

• DC accuracy is improved in CCM operation

TI D-CAP3[™] – Adaptive Ripple Injection

- Time constant for D-CAP2[™] = 30 µs
- Time constant for D-CAP3[™] = 120 µs
- Adaptive ripple algorithm changes RC time constant with V_{IN}, V_{OUT} and I_{OUT}

Multiphase DC-DC Converter – Introduction

- Set of parallel converters
- Each power-stage is known as a *phase*
- The phases operate equally spaced through the period

Multiphase DC-DC Converter – **Output Ripple**

Reduced output ripple current \rightarrow Lower output capacitance to

maintain same voltage ripple

Multiphase DC-DC Converter – Input Ripple

Reduced switch current \rightarrow Distributed power loss and better thermal performance

Lower input RMS current \rightarrow Smaller capacitance, lower ESR power loss, reduced self heating

Multiphase DC-DC Converter – Load Transients

Improved transient with pulse overlap \rightarrow Lower output capacitance

- During load insertion, all the phases (N) are turned on
 - If L is the inductor of each phase, effective inductance is L/N
 - Ability to deliver current to the output capacitor is N times higher than single-phase

Multiphase DC-DC Converter – High Efficiency

High Efficiency Over Wide Load Range

- Dynamic phase management is integral to achieve high-efficiency over wide loading conditions
 - Higher load current, more phases
 - As load current is reduced, there is a trade-off between switching and conduction losses — dropping phases can optimize the efficiency
 - At extreme light load, the power supply transitions to single-phase discontinuous conduction mode (DCM)

TI D-CAP+™ Control Architecture

TI D-CAP+™ – Illustrated Transient Waveforms

Load Step-Up

Load Step-Down

- Pseudo constant switching frequency at steady state without internal clocks
- Variable switching frequency during load transients
- Dynamic current sharing during load transients

TI D-CAP+™ – Dynamic Phase Shedding

- Phase adding/shedding is determined based on the instantaneous ISUM
- Consists of both current and time hysteresis for phase shedding

TI D-CAP+™ – Loop Gains with Different Phases

TPS53640 with 12 V_{IN} to 1.7 V_{OUT} @ 600 kHz, 10 A load and 1 m Ω loadline

Loop Gain is Insensitive to the Number of Phases

TI D-CAP+™ – High Efficiency

TPS53661 + CSD95372B with 12 $V_{\rm IN}$ to 1.8 $V_{\rm OUT}$ @ 600 kHz, 150 nH

TI D-CAP+™ – Fast Phase Adding

120 nH @ 500 kHz with 2x470 $\mu\text{F}/4.5$ m Ω + 8x22 $\mu\text{F}/\text{DIMM}$

LF RR @ 1 kHz, 50% duty cycle (@ sensing point) 14.2 A-59.5 A @ 11.3 A/µs

TI D-CAP+™ – Dynamic Current Sharing

- Currents are amplified, filtered and compared with average current
- At each on-time, the on-time reference (DAC) is "tweaked" by a voltage equivalent to K x (I_{IN} - I_{AVG})
- Since filtering is light (5 μs), system response is < 25 μs
- Current sharing loop analysis paper is available on request

TI D-CAP+™ – Dynamic Current Sharing

(1 A to 100 A @ 600 A/µs and Load Frequency = Switching Frequency)

Comparisons of TI D-CAP™ Families

Control Architecture	Features
D-CAP™	 Adaptive on-time control Fast load transient response Ramp compensation built-in High efficiency @ light loads
D-CAP2 TM	Internal ripple compensation for MLCCs
D-CAP3™	 Sample-and-hold for DC accuracy improvement for CCM/DCM Adaptive ripple compensation
D-CAP+ TM	 With actual current feedbacks Extension to multi-phase applications Dynamic current sharing Dynamic phase shedding

COT Control – Advantages and Challenges

Advantages	Disadvantages	
Simple design, no compensation required	Variable switching frequency (Solution: D-CAP/D-CAP2/D-CAP3/D- CAP+)	
Excellent load transient response	Sensitive to PCB design for jitter (Solution: D-CAP/D-CAP2/D-CAP3/D- CAP+)	
Excellent line transient response	Minimum ripple requirement or output capacitor type limitations (Solution: D-CAP2/D-CAP3/D-CAP+)	
Seamless DCM/CCM transitions for good light-load efficiency	Poor load/line regulation (Solution: D-CAP3/D-CAP+)	
	Not easy for multi-phase configurations (Solution: D-CAP+)	

Design Example #3 COT Control – Design Specifications

Design Specifications				
Input voltage range	5 V to 18 V			
Target output voltage	1.2 V			
Output current range	0 A to 6.6 A			
Switching frequency	500 kHz			
Controller	TPS53515			

Design Example #3 COT Control – Performance Graph

Texas Instruments – 2014/15 Power Supply Design Seminar

Switching Operation

Design Example #4 D-CAP+ Design Specifications

Design Specifications				
Input voltage range	12 V			
Target output voltage	1.6 V-1.9 V			
Output current range	0 A to 189 A			
Switching frequency	600 kHz			
Controller	TPS53641			

1.61

Т

Design Example #4 D-CAP+ Performance Graph

12 V to 1.8 V with 4-phase operations @ 600 kHz, 150 nH, and 1 m Ω loadline

Design Example #4 D-CAP+ Performance Graph (2)

12 V to 1.8 V with 4-phase operations @ 600 kHz, 150 nH, and 1 m Ω loadline

1 µs/div

Dynamic Voltage Change (1.6 V to 1.82 V @ 5 A)

20 µs/div

References

- SEM 1500 Under the Hood of Low Voltage DC/DC Converters
- SLVA301 Loop Stability Analysis of Voltage Mode Buck Regulator with Different Output Capacitor Types – Continuous and Discontinuous Modes
- Easy Calculation Yields Load Transient Response
 - http://powerelectronics.com/site-files/powerelectronics.com/files/archive/ powerelectronics.com/ar/502pet23.pdf
- Controlling Output Ripple and Achieving ESR Independence in Constant On-Time (COT) Regulator Designs
 - http://www.ti.com/lit/an/snva166a/snva166a.pdf
- Buck Regulator Topologies for Wide Input/Output Voltage Differentials
 - http://www.ti.com/lit/an/snva594/snva594.pdf
- Switching Power Supply Topology Voltage Mode vs. Current Mode
 - http://www.ti.com/general/docs/litabsmultiplefilelist.tsp?literatureNumber=slua119
- Modeling, Analysis and Compensation of the Current-Mode Converter
 - http://www.ti.com/general/docs/lit/getliterature.tsp?
 baseLiteratureNumber=SLUA101&fileType=pdf

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated