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Content Outline 

1. The Low Power Flyback Converter 
•  Characteristics 
•  Key performance 
•  Typical operating and control modes 

2. PSR Regulation Methods 
•  Constant Voltage (CV) – regulating VOUT 

•  Constant Current (CC) – regulating IOUT 

3. Low Standby Power 
•  Lowering consumption 
•  Achieving low input power 

4. Results and Comparison (10 W at 5 V) 
•  DCM and variable frequency – primary side voltage and current control 
•  DCM and fixed frequency – optical coupler feedback 
•  DCM, variable frequency – optical coupler feedback, primary side current control 
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The Low Power AC/DC Flyback 

Key Points 
 
1.  Power inductor  

•  AKA, flyback transformer 
•  3rd “bootstrap” winding 

2. PWM Control 
•  Peak current control 
•  Switching frequency control 
•  Low pin count 
•  Requires start-up circuit 

3. Feedback 
•  TL431 network 
•  Optical Coupler 
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The Low Power AC/DC Power Supplies 

3-35 Watts, 3 V to 20 V 
 
•  Universal input, 85-265 VRMS 
•  AC/DC adapters and chargers 
•  Set top boxes 
•  E-meters 
•  Auxiliary supplies – DTV, servers…	  

Key Parameters 
•  Size and cost 
•  Voltage and current control 
•  Efficiency 
•  Standby power 
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Performance – Efficiency 

Efficiency standards for External Power Supplies (EPS) 
 
•  Department of Energy, DOE 
•  European Commission Code of Conduct, COC 



5-6 Texas Instruments – 2014/15 Power Supply Design Seminar   

Performance – Standby Power 

Efficiency standards for External Power Supplies (EPS) 
 
•  European Commission, Tier 2 – January 2016     75 mW 
•  Department of Energy – July 2013       100 mW 
•  5 Star Charger           30 mW 

•  OEM specifications at 10 mW and asking for 5 mW 
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Discontinuous Current Mode (DCM) 

•  Single switch control 
•  TON:  

–  Switch on-time 
–  Energy taken from VIN and 

stored in primary 
–  Core is “magnetized” 

•  TDM:  
–  Switch is off 
–  Stored energy is fully 

transferred to VOUT 

–  Core is “demagnetized” 
•  TDIS:  

–  Discontinuous time 
–  Currents are zero 
–  TDIS = 0 à transition mode 
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Power Control with the DCM Flyback 

•  Each switching cycle 
–  A controlled energy is taken from the input 
–  This energy (minus some losses) is delivered to the load 
–  The system is at the same condition at the beginning of every cycle 

•  Power is modulated by changing: 
–  Cycles/second – frequency modulation 
–  Energy/cycle – amplitude modulation 

1) CEST = 1
2  LP  ×  IPRI(peak)2  (transformer energy stored each cycle)

2) PIN ≅ fsw ×  CEST (converter input power)

3) η = 
POUT
PIN

 (overall converter efficiency)
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DCM or TM(Transition Mode)  
with Valley Switching 

•  Waiting for a zero crossing prevents continuous conduction mode (CCM) 

•  Switching on a valley reduces dissipation and EMI 

•  1/fSW(limit) sets a minimum period 

DCM-TM – Quasi-Resonant DCM – Valley Switching

TR

VBLK

Deep DCM

Drain Voltage

1/fSW(limit)
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DCM, Fixed Frequency Control 

•  Frequency is constant 

•  Peak current is modulated 

+  Controlled switching frequency 
-  Lower efficiency 
-  High stand-by power 
-  Limited dynamic range 
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DCM, Variable Frequency Control 

•  Peak current is modulated 

•  Frequency is modulated 

•  Approaches TM at low line 
full load 

+  Smallest inductance 

+  Good efficiency 
+  Best current control 

-  Wide frequency range 
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Control Law Profile
QR Mode
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TM/DCM, Variable Frequency Control 

•  Peak current is modulated 

•  Frequency is modulated 

•  Operates TM at full load 

+  Better full load efficiency 
-  Larger primary inductance 
-  Wide frequency range 
-  Reduced input voltage          
     rejection 
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Primary Side Regulation (PSR) 

Constant Voltage (CV) and  
Constant Current (CC) Methods  
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Primary Side Regulation (PSR) 

•  Controlling output voltage 
and current with no direct 
sensing 

•  Constant Voltage (CV) for 
IO = 0 A to IOCC 

•  Constant Current (CC) for 
VO = VOHU to VOCV 

•  The output hold up 
voltage, VOHU, depends on 
the primary controller 
supply dropout   
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PSR – Component Reduction 

•  Opto-coupler and TL431 circuits are eliminated 
•  Less parts = lower cost, smaller supply, higher reliability 
•  Less design, also less design flexibility 
 

From This   To This 
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PSR – Feedback Concept 

1.  VOUT + VD, scaled by a turns 
ratio, at Aux during TDM 

2.  Use for voltage feedback (at VS 
input) 

But….. 
3.  Signal is not continuous 
4.  NA / NS must be controlled 
5.  VD (output diode voltage) is a 

source of error 
6.  Nothing is this simple 
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PSR – Feedback Concept 

Auxiliary winding waveform: 
Leakage inductance 

–  Reset spike 
–  Rings with CSWN 

1.  ESR 
–    

2.  CSWN rings with LP 

Best regulation if sampled  
when ISEC  goes to zero  
 
    à “VS sample”   
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PSR – Voltage Loop 

•  Samples output at fSW rate 

•  fSW has wide range, >100:1, for low stand-by power  

•  Compensation (M(s)) done internally 

+

+   -
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PSR – Transient Response Problem 

Poor Transient Response 
from Zero Load 
 
1.  Low switching 

frequencies  

2.  Feedback is only 
available during a 
switching event 

3.  Poor transient 
performance, or a very 
large output capacitor 

 
 ΔVOUT =

IOUT(step)
COUT ×  fSW(min)

As	  Bad	  as:	  
	  

2
1

3
¨VOUTVOUT

VAUX

IOUT(step)
IOUT

fSW(min)

1



5-20 Texas Instruments – 2014/15 Power Supply Design Seminar   

PSR Voltage Error Sources 
•  Reference, Error Amplifier, Resistors 

•  Rectifier Diode Drop 
–  Actually regulating VOUT + VD 

–  Diode-to-diode VD at a fixed low current is consistent for a given diode 
selection 

–  Diode temperature variation will impact VOUT if not compensated for 

•  Transformer 
–  Reasonable manufacturing gives good turn control 
–  Impact of leakage inductance is small 

•  Winding Voltage Sampling Errors (generally seen at light loads) 
–  Auxiliary diode, snubber diode, snubber noise corrupting signal 
–  Auxiliary to secondary cross-regulation at light loads 
–  VS filtering 

 
•  Generally +/- 5% is readily achievable across line and load 
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Constant Current Control – Concept 

1) IO  =  ISEC(Avg) =
ISEC(peak)

2
 ×  

TDM
TSW

2) ISEC(peak) = IPRI(peak) ×  
NP
NS

Therefore:  3)  IO =
IPRI(peak)

2
 ×  

NP
NS

 ×  
TDM
TSW

•  Controlling the peak primary current and the demagnetization 
duty-cycle (TDM / TSW) will regulate the output current accurately 

(~+/-5% achievable) 

0

0

TON TDM

TSW

NS

 NP

IPRI (peak)IPRI

ISEC

IPRI (peak) x
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Standby Power (PSB) 

Power consumed with zero external load,  
a very common state for power supplies 
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PSB =  fSW(sb) ×  CEIN(min) +  PSTRT  +  PLKG

Where:

  fSW(sb)= converter switching frequency during stand-by

 CEIN(min) =  converter minimum input cycle energy 

 PSTRT =Start-up power

 PLKG = Capacitor and junction leakage losses∑

PSB Components 

•  Generally fSW x CEIN dominates 
–  Encompasses output preload and primary bias power 

•  PSTRT can be significant at low target PSB 
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PSB – Start-Up 

Active Start-Up: 
No PSB penalty 

Resistive Start-Up:
7-300 mW to PSB 
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PSB Control Law Must Haves 

•  Low input energy / cycle 
•  Low switching frequency 
•  Constant time / cycle 

–  Burst mode versus constant fSW(sb)  
–  Same average cycles / second – worse transient response 

Switching Cycle During Standby

Burst

Constant fSW

Same PSB but worse
transient response
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PSB and CEIN(min) 

•  The minimum cycle energy is dependent on the AM range and 
fSW(max) 

 
•  The maximum AM range, KAM, will typically be limited to 3-5 
•  This expression does not take into account the impact of the 

switch-node capacitance 
•  ηT is an efficiency estimate ignoring capacitive and bias loss 
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•  Delta input cycle energy  

•  A portion of this is dissipated in the switch and tank,  

•  A portion goes into the transformer à output,  

 

PSB – Switch Node Capacitance Impact 
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PSB – Switch Node Capacitance Impact 

Example Power 
Supply Parameters 
PO (max) 10 W 

fSW (max) 100 kHz 

VBLK (max) 365 V 

VR (nom) 80 V 

KAM 4 

CSWN 70 pF 

ηT
* 80% 

For the example to the right ignoring the  
effect of CSWN: 
 
 

* Efficiency estimate ignoring 
capacitive and bias loss 

CEOUT(min) = ηT  ×  CEIN(min) = 6.25 µJ

Total minimum energy w/ CSWN: 
Limits very light load 
efficiency and dictates a 
minimum load 

CEIN(min) = 7.81 µJ

ΔCEIN(cap, total) = 9.33 µJ

ΔCEIN(cap, dissipated) = 4.89 µJ

ΔCEIN(cap, out) = 4.44 µJ

ΔCEOUT(cap, out) ≅ ηT ×  ΔCEIN(cap, out) = 3.55 µJ

CEIN(min, total) = 7.81 µJ + 9.33 µJ =  17.14 µJ

CEOUT(min, total) = 6.25 µJ + 3.55 µJ =  9.80 µJ

Incremental energy due to CSWN: 
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PSB – Minimum Load Requirements 

•  The converter has a minimum load it will deliver that is equal 
to: 

•  Bias power plus a preload will adjust fSW(sb) to approach 
fSW(min), or exceed for improved transient response 

•  If the preload is not adequate then regulation will be lost  
    with VO rising 
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PSB – Versus Transient Response 
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Low Power Flyback Control Recap 

•  Discontinuous operation with variable frequency optimizes 
efficiency across load 

•  Primary side regulation can provide good V and I regulation 
but transient response can suffer 

•  Standby power benefits from:  
-  Low switching frequencies 
-  Low bias and start-up overhead 
-  Low switch-node capacitance 
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Results and Comparison 

How do different controllers affect  
the performance of a typical power supply? 
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AC/DC 5 V / 10 W Adaptor 

General Specifications: 
•  Universal AC input : 85 V to 265 V, 50/60 Hz 
•  5 V output; 2 A max output current 
 
Control Methodologies Evaluated: 
•  DCM, fixed-frequency, control with opto feedback (DCM/FF/Opto) 
•  DCM with valley switching and PSR (DCM/VS/PSR) 
•  DCM with valley switching and opto feedback (DCM/VS/Opto) 
 
Controlled Parameters: 
•  All designs operate at ~100 kHz at maximum load 
•  Same transformer, FET, diode used on all designs  
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DCM/FF/Opto Example 

1.  Start-up resistors increase standby power 
2.  Large bias cap; factors include IDD, opto  
     current, UVLO hysteresis 
3.  TL431 and opto-coupler for regulation 

4.  Faster loop response allows smaller  
     output caps 
5.  Minimum on-time requires turn-on resistor at  
     no load operation 
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DCM/VS/PSR Example 

1.  No start-up resistors (lower standby) 
2.  Small bias capacitor 

3.  PSR eliminates opto-coupler and TL431 

4.  Larger output capacitors needed for transients 
5.  Small pre-load resistor needed for no load  
     operation 
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DCM/VS/Opto Example 

1.  No start-up resistors (lower standby power) 
2.  Medium sized bias capacitor 
3.  TL431 and opto-coupler regulation 

4.  Faster loop response allows smaller 
     output caps 
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Photographs 

1.  Start-up resistors 

2.  Bias capacitor 

3.  TL431 and opto-coupler 

4.  Bias capacitor 

DCM/FF/Opto 
www.ti.com/tool/pmp9203 

DCM/VS/PSR 
www.ti.com/tool/pmp9202 

DCM/VS/Opto 
www.ti.com/tool/pmp9204 
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Load Regulation 

•  TL431 and opto-coupler provides excellent load regulation 

•  PSR uses cable-drop compensation 
-  Compensates for resistive drops on the secondary side 
-  Keeps load regulation within +/-1% 
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Overload Protection 

•  Traditional fixed-frequency controller: 
-  Frequency and peak current held constant 
-  Currents during overload can become excessive 

•  DCM/VS controllers include current regulation feature 
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•  All designs achieve >80% efficiency at max load 
•  DCM/VS controllers provide better efficiency at low to medium loads 

-  Due to reduced frequency operation 

•  Start-up resistors have major impact at higher input voltages 
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Standby Power Consumption 

•  Pre-load resistor of PSR design accounts for a large portion of Psb 

•  TL431 and opto-coupler biasing increases Psb 

•  Fixed frequency example Psb dominated by start-up resistors 
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Load Transient Response 
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•  PSR response varies  
-  Dependent on when in the switching cycle the transient hits 
-  Starting at 0 A vs. a few mA makes a big difference 

•  TL431 and opto-coupler response is predictable  
-  Dependent on output capacitance and bandwidth 
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•  DCM/VS/PSR example design can be laid out to fit into a 1”x1” cube 

•  Two secondary transformer wires are the only electrical connection 

between the two circuit boards (not possible with opto feedback) 

•  Small product size requires efficiency >80% to prevent thermal issues 

•  PMP8363 available on PowerLab: http://www.ti.com/tool/pmp8363 

Small Form Factor Example 
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Comparison Summary 

DCM/FF/Opto DCM/VS/PSR DCM/VS/Opto 

Output Voltage 
Accuracy +/-2% +/-5% +/-2% 

Load Regulation +/-0.1% +/-0.6% +/-0.1% 

Max Load Eff. 
(115 VAC / 230 VAC) 82.0% / 80.4% 82.2% / 82.5% 81.3% / 81.7% 

Standby Power 
(115 VAC / 230 VAC) 216 mW / 584 mW 14 mW / 16 mW 57 mW / 64 mW 

Load Transients 
(0 A to 2 A) -200 mV -1100 mV -200 mV 

Current Regulation Not Provided +/-5% +/-5% 

# of Components 41 27 37 

Relative Cost Low Lowest Low 
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