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Agenda 
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•  Synchronous boost introduction 
-  Deciding how many phases to use 

•  Synchronous multiphase boost waveforms 
•  Design example single phase/two phase 

-  Component selection 
-  Loss calculations 
-  Compensation 

•  Results 
•  Summary 



Changing to Synchronous Rectification 
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Losses = IRMS
2  ×  RDSon

Losses = (1− D) ×  Iout  ×  VF

Losses = Iout  ×  VF Losses = IRMS
2  ×  RDSon
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Boost Converter Basic Operation 
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Simple Boost Diagram 

Boost During DON Period 

Boost During DOFF Period 
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Determine Input Current per Phase 
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Drawing Comparisons Between Buck and Boost 

Pin_BOOST =
Pout_BOOST

η
Pout_BOOST = Vout_BOOST  ×  Iout_BOOST

Vout_BUCK ≡Vin_BOOST
Iout_BUCK ≡Vin_BOOST

Canonical Schematic 



Vout

Vin

T

Vout

Vin

T

T T

VSW1 VSW2

IL1 IL2

Vin
+
-

+

-
Vout

Iout

Rout
Cout

IC_out_RMSIC_in_RMS

Iin_ Avg
IL1 VSW1

ISW1

ID1

VSW2

ISW2
ID2IL2

4-6 

Interleaved Boost Basic Operation 

Vin
L

 ×  D
Fsw

Inductor Currents 

Phase 1 
Inductor Current 

Phase 2 
Inductor Current 
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Interleaved Boost Basic Operation 
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Boost Switch Currents 

Phase 1 Switch Current Phase 2 Switch Current 
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Interleaved Boost Basic Operation 

Rectifier Switch Currents 

Phase 1 Rectifier Current Phase 2 Rectifier Current 
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Interleaved Boost Basic Operation 

DC content removed 
Ripple currents cancel at 50% 

Input Capacitor Currents 
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Interleaved Boost Basic Operation 

Ripple currents cancel at 50% 

Output Capacitor Currents 
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The Basic Boost Calculations 
Design Example 
•  Automotive trunk amplifier 
•  14 Vin 

•  24 Vout @ 8 A 
•  Switching Frequency (Fsw) 

-  250 kHz (single phase) 
-  125 kHz (two phase) system switching frequency held constant 

Equation Single Phase Two Phase Comment 

250 kHz 125 kHz Per Phase FSW 

	

	
 Transfer Function 

	

	
 D = 0.42	
 D = 0.42	
 Rearranging for D 

	

	


Pin = 206 W	
 Pin = 206 W	
 Efficiency Est. 93% 

	

	
 n = No. Phase	
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P
in

=
Pout
η

Vout
Vin

=
1

1− D

D =
Vout −Vin
Vout

14.75 A= 206 W
14 V ×  1

Iin_ Avg =
Pin

Vin ×  n 

6.8 A= 206 W
14 V ×  2

14.75 A= 206 W
14 V ×  1

6.8 A= 206 W
14 V ×  2
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Selecting the Right Inductor  
and Inductance Calculations 

Graph showing size factor as a function of ΔIL 

Slope reduces after ΔIL	  = Iin 

Set ΔIL	  = 50% of Iin_Avg 

ΔIL 
Iin 
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Boost Inductor Losses 
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Equation Single Phase Two Phase Comment 

≈ 7.5 A	
 ≈ 3.5 A	
 Set ΔIL to 50% of lin_Avg 

= 18.5 A	
 = 8.4 A	

Isat to be set higher than 

IL_peak 

	

	


= 3.16 µH	
 = 13.4 µH	
 Boost inductor calculation 

=14.9 A	
 = 7A	

RMS current for  

DCR Loss 

Selected Inductor Coilcraft 
XAL1580-302	


Coilcraft 
SER1390-153	
 2 cores for the two phase 

Inductor size 13.2, 14.1, 7.5	
 13.5, 13.5, 9	
 Volume of inductor  
(in mm3) 

DCR	
 3 mΩ	
 14 mΩ	


= 0.6 W	
 = 1.4 W	
 Total DCR losses 

= 2.6 W	
 =18 mW	
 Total from online calculator 

ΔIL =  0.5 ×  Iin _ Avg

IL _ peak =  
ΔIL
2

 + Iin _ Avg

L =
Vind  ×  D
ΔI L  ×  FSW

IL _ RMS =  Iin _ Avg
2 +

ΔIL
12

⎛
⎝⎜

⎞
⎠⎟

2

DCRloss = IL _ RMS
2  ×  DCR

Coreloss =  K1 ×  fx  ×  By  ×  VE



AC Inductor Losses 
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•  K1: Constant of the core material 

•  𝑓: Switching frequency in kHz 
-   Higher frequencies results in higher losses 

•  B: Flux density in kGuass 
-  Lower flux density results in lower losses 

•  x: Frequency exponent for a specific core material 

•  y: is the flux exponent for a specific core material 

•  VE: Core volume 
-  Larger volume results in more losses 

Coreloss=  K1 ×  fx  ×  By  ×  VE



Boost Convertor MOSFET Considerations 

•  VDS rating must be greater than output voltage  
-  25% margin is generally acceptable 

•  Calculate losses to determine suitability 
•  Losses ideally should be distributed evenly between  
    conduction losses and switching losses 

-  Higher RMS currents result in larger conduction losses 
-  Higher gate charge results in higher switching losses 
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Control MOSFET Losses 

Equation Single Phase Two Phase Comment 

FET Selected CSD18531Q5A CSD18531Q5A RDSon, 3 mΩ, 
hot 4 mΩ 

≈ 9 A	
 ≈ 4.47 A	
 FET RMS 
current 

≈ 0.3 W	
 ≈ 0.16 W	

Total 

conduction 
losses 

≈ 0.5 W	
 ≈ 0.24 W	

Total 

transitional 
losses 

FETCond =IFET_ RMS
2  ×  RDSon

SWTRANS_Loss =

Vin  ×  Iin _ Avg  ×  TSLEW  ×  FSW

I
FET_RMS

= D ×  Iin _ Avg



Control MOSFET Transitional Losses 
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Transitional Losses at Turn On 
	  	  

•  Use triangular approximation 

-    

-  For worst case, the “1/2” drops out 
1/2 ×  base ×  height

SWTRANSLoss = Vin  ×  Iin _ Avg  ×  TSLEW  ×  FSW
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Synchronous MOSFET Losses 

Equation Single Phase Two Phase Comment 

FET Selected CSD18531Q5A CSD18531Q5A RDSon, 3 mΩ, 
hot 4 mΩ 

	

	

	


≈ 11.2 A	
 ≈ 5.3 A	
 FET RMS current 

≈ 0.44 W	
 ≈ 0.22 W	
 Conduction 
losses 

≈ 0.2 W	
 ≈ 0.2 W	
 QOSS losses  
for both FETs 

≈ 0.6 W	
 ≈ 0.35 W	

100 nC of QRR 

losses in  
boost FET 

≈ 0.18 W	
 ≈ 0.33 W	
 Loss total in IC 

I
FET_RMS

= 1− D  ×  Iin _ Avg

FETCond = I(FET_RMS)
2  ×  RDSon

QRR_Loss =  QRR ×  Vout  ×  n ×  FSW

QOSSLoss = 
QOSS

2
 ×  Vout  ×  FSW × n

IC_Loss  = 

Vin  ×  n ×  QGtot  ×  FSW( ) + IQ{ }
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Boost Converter FET Switching 
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VGATE 

VDS 

ID 

Control FET: Turn On 
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Boost Converter FET Switching 

Control FET: Turn Off 
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Boost Converter FET Switching 

Synchronous FET: Turn On 
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Boost Converter FET Switching 

Synchronous FET: Turn Off 

VGATE 

ID 

VDS 
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Input/Output RMS Ripple Current 

Single Phase Two Phase Comment 

	

	


Two phase 
D < 0.5 

 	

	


Two phase 
D < 0.5 

Pk-Pk ripple 
current in COUT 

1 x PCV1E391MCL2GS 2 x PCV1E391MCL2GS 
390 µF  

electrolytic 
selected 

IC_in_RMS=
ΔIL
12

= 2.1 A

ΔIC_out ≈ Iin _ Avg =14.75 A ΔIC_out ≈ Iin _ Avg  = 6.8 A

IC_in_RMS=
ΔIL
12

 ×  1− 2D
1− D

= 0.9 A

IC_out_RMS ≈  Iout  ×  D
(1− D)

= 6.7 A IC_out_RMS ≈  
Iout

2
 ×  D × (1− 2D)

(1− D)
= 2.5 A
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Output Ripple Voltage Calculations 

Single Phase Two Phase Comment 

Ripple voltage 
due to charge 

Cout 

Ripple voltage  
due to CoutESR  

	


	


Total ripple 

voltage 

VC_out_Ripple  = 
ΔIC_out  ×  D
FSW  ×  Cout

= 29 mV VC_out_Ripple  = 
ΔIC_out  ×  D
FSW  ×  Cout

= 29 mV

VC_out_Ripple_ESR  = ΔIC_out  ×  Cout _ ESR

= 137 mV

VC_out_Ripple_ESR  = ΔIC_out  ×  Cout _ ESR

= 144 mV

Vout _ Ripple  = 

VC_out_Ripple
2  +  VC_out_Ripple_ESR

2

= 140 mV

Vout _ Ripple  = 

V(C_out_Ripple)
2  +  V(C_out_Ripple_ESR)

2

= 147 mV

ΔICout ≈
Iout

n × (1− D)
 =  13.7 A ΔICout ≈

Iout
n × (1− D)

 =  6.89 A
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Cin RMS Ripple Current Rating 
Multiphase Boost 

Texas Instruments – 2014/15 Power Supply Design Seminar   

•  Comparison  of ripple current cancelation  

•  Boost convertor 1, 2, 3 and 4 phase approach  

•  Using a ∆IL of 1 A peak to peak 
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Cout RMS Ripple Current Rating 
Multiphase Boost 

•  Approximation  
•  Output ripple current cancelation for a boost convertor  

•  Iout of 1 A using a 1, 2, 3 and 4 phase approach 
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Cin RMS Ripple Current  
Condition Single Phase 

0 < D < 1	
 	

	


Condition Three Phase 

0 < D < 0.33	
 	

	


0.33 < D < 0.66	
 	

	


0.66 < D < 1	
 	

	


Condition Two Phase 

0 < D < 0.5	

	

	

	


0.5 < D < 1	
 	

	


ΔIL
12

ΔIL
12

 ×  2D−1
D

ΔIL
12

 ×  1− 2D
1− D

ΔIL
12

 ×  1− 3D
1− D

ΔIL
12

 ×  (1− 3D) ×  (3D− 2)
3D ×  (1− D)

ΔIL
12

 ×  3D− 2
D
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Condition Four Phase 

0 < D < 0.25	
 	

	


0.25 < D < 0.5	
 	

	


0.5 < D < 0.75	
 	


	


0.75 < D < 1	
 	

	


ΔIL
12

 ×  1− 4D
1− D

ΔIL
12

 ×  (1− 4D) ×  (4D− 2)
4D ×  (1− D)

ΔIL
12

 ×  4D− 3
D

ΔIL
12

 ×  (3− 4D) ×  (4D− 2)
4D ×  (1− D)

Cin RMS Ripple Current  
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Cout RMS Ripple Current* 

Condition Single Phase 

0 < D < 1	
 	

	


Condition Three Phase 

0 < D < 0.33	
 	

	


0.33 < D < 0.66	
 	

	


0.66 < D < 1	
 	

	


Condition Two Phase 

0 < D < 0.5	
 	

	


0.5 < D < 1	
 	

	


*Approxima,ons	  

IOUT ×  D
(1− D)

IOUT
2

 ×  D × (1− 2D)
(1− D)

IOUT
2

 ×  2 × (2D−1)
1− D

IOUT
3

 ×  (3D− 2) ×  (1− 3D)
(1− D)

IOUT
3

 ×  D × (1-3D)
(1− D)

IOUT
3

 ×  3D− 2
1− D
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Condition Four Phase 

0 < D < 0.25	
 	


	


0.25 < D < 0.5	
 	

 	


0.5 < D < 0.75	
 	  
	  

0.75 < D < 1	
 	  
	  

Cout RMS Ripple Current* 

IOUT
2

 ×  D ×  (1− 4D)
(1− D)

IOUT
2

 ×  (4D− 2) ×  (1− 4D)
2 ×  (1− D)

IOUT
2

 ×  (4D− 2) ×  (3− 4D)
2 ×  (1− D)

IOUT
2

 ×  4D− 3
1− D

*Approxima,ons	  



4-31 Texas Instruments – 2014/15 Power Supply Design Seminar   

Loop Stability of a Current Mode Boost 

•  Current mode control modifies the complex conjugate double pole to two 
separate poles 

-  The inductor pole pushes to a higher frequency 

•  Typically use current mode control due to the Right Half Plane Zero (RHPZ) 

-  RHPZ causes sudden decrease in the 1-D period due to control loop 
      increasing D for sudden load step 

-  Adds additional phase drop of negative 90o phase shift 

•  Cross over frequency below RHPZ frequency to avoid additional phase shift 

•  For current mode control, duty cycles approaching 0.5 and beyond require  
     modification to the current sense to avoid subharmonic oscillation 
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Loop Stability of a  
Dual Phase Current Mode Boost 

•  Adjustments to accommodate an interleaved configuration 
•  Divide down the output capacitor by number of phases 

-  Cout becomes 195 µF from 390 µF  

•  Multiply the output capacitor ESR by number of phases ESR 

-  ESR becomes 40 mΩ, from 20 mΩ 

•  Multiply Rout by number of phases  

-  Rout becomes 6 ohm from 3 Ω 

-  All other elements stay the same    
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Current Mode Boost Power Stage 

Variable Equation 
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Type II Error Amplifier 

ωZEA

2π
= ωC

2π ×  10

AVM	


ωHF

2π
= ωR

2π

ωZEA
2π

ωHF
2π
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Type II Error Amplifier 

Variable Single Phase Two Phase Comment 

RFBT	
 10 kΩ	
 10 kΩ	
 Choose value between 	

2 kΩ  100 kΩ	


DMAX	
 = 0.625	
 = 0.625	


RI	
 = 40 mΩ	
 = 80 mΩ	


GM_Mod	
 = 9.375	
 = 4.688	


=
Vout −Vin_Min

Vout
,Vin_Min = 9V

=
1−Dmax
RI

ACS  ×  RS

VC
VREFREF

VFB
CCOMP

RCOMP

RFB

RFBB

VOUT’
CHF

+

-
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Boost Compensation Approach 

Variable Single Phase Two Phase Comment 

RHPZ	
 ≈ 52 kHz	
 ≈ 21 kHz	
 	

	


FC	
 ≈ 12.5 kHz	
 ≈ 5 kHz	


ωC	
 ≈ 12.5 kHz    2π	
 ≈ 5 kHz    2π	


AVM	
 = 4.4	
 = 1	

	

	

	


RCOMP	
 = 44 kΩ	
 = 10 kΩ	
 = AVM    RFBT	


CCOMP	
 ≈ 2.8 nF	
 ≈ 27 nF	

	

	

	


CHF	
 ≈ 68 pF	
 ≈ 720 pF	

	

	

	


=
Rout  ×  n ×  (1− D)

L ×  2π

=
ωC  ×  

Cout
n

GM _ Mod

CCOMP = 1
RCOMP  ×  ωZEA

CHF = 1
RCOMP  ×  ωHF

= RHPZ
4

=
ωR
4××

×
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Asymptotic 

Type II Error 
Amplifier 

Power Stage Current 
Mode Boost 

Control Loop 
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Compensation Results Single Phase 

Simulation results  
•  A crossover frequency of ~13 k  
    and a PM of ~50 degrees  

MathCAD results 
•  FC of ~13 k and a PM  
     of ~75 degrees  
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Dual Phase Compensation Results 

Simulation results (Simplis)  
•  Shows an FC of ~5 kHz and a 

PM of ~56 degrees  

Mathcad results 
•  Mathcad result correlate well to 

simulation showing an Fc of ~5 kHz 
and a PM of ~60 degrees 
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Summary of Results 
Parameter Single Phase Dual Phase 
Per phase switching frequency 250 kHz 125 kHz 
Inductance value 3 µH 15 µH 
Isat 15 A 9 A 
Energy  1/2 x L x I2 337.5 µJ 1.215 mJ 
Inductor DCR losses 0.6 W 1.4 W Total 
Inductor core losses 2.6 W 0.018 W Total 
Rsense 4 mΩ 8 mΩ 
Rsense losses 0.9 W 0.8 W Total 
Boost FET conduction losses 0.3 W 0.16 W Total 
Boost FET transitional losses 0.525 W 0.25 W Total 
FET QOSS losses 0.2 W 0.2 W Total 
QRR losses 0.35 W 0.35 W 
Synchronous FET conduction losses 0.44 W 0.22 W 
IC losses 0.182 W 0.336 W 
Total losses 6.097 W 3.724 W 
Calculated efficiency ~97% ~98% 
Cin RMS ripple current rating 2.1 A 0.9 A 
Cout RMS ripple current rating 6.7 A 2.5 A 
Cin 22 µF 22 µF 
Cout 780 µF 390 µF 
FC 12.5 kHz 5 kHz 
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Summary of Results 

Part Number Single 
Phase Part Number Dual 

Phase 
MOSFETs CSD18531Q5A 2 CSD18531Q5A 4 
Cin 25 V Ceramic 1 25 V Ceramic 1 
Cout PCV1E391MCL2GS 2 PCV1E391MCL2GS 1 
Inductor XAL1580-302 1 SER1390-153 2 
IC LM5122 1 LM5122 2 
Rsense 2 W Current Sense  1 2 W Current Sense 2 
Total   8   12 

Component Count Comparison 
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Bench Test Results:  
Single Phase (PMP9385) 

FC ~15 kHz; PM ~50° 

Efficiency and Thermals Comparison 

96.75% at 8 A out 
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Bench Test Results:  
Dual Phase (PMP9386) 

FC ~7.5 kHz, PM ~60° 

Efficiency and Thermals Comparison 

~97.5%	  at	  8	  A	  out	  
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Conclusion 
•  Using equations and step-by-step approach provided herein enables 

designer to adjust design for optimizing efficiency or size 
•  Both size, cost and performance can be modified by using 
    multiphase boost approach 
•  Thermal performance improved using two phase approach 

-  Thermal stress on FETs significantly reduced with multiphase 
approach 

•  For single phase boost 
-  Increasing switching frequency in an attempt to reduce size will 

result in exceeding FET thermal limits 
•  For two phase boost  

-  Increasing switching frequency is feasible without thermal stress 
on FETs  

-  Significant reduction in size can be further gained 
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