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•  Introduction              5 min. 
–  Foundational principles of electromagnetics 
–  Power transfer - near and far field 

•  Existing and Emerging Wireless Power Standards      5 min. 
–  WPC, PMA, A4WP comparison 
–  Electromagnetic field safety implications of WPT 

•  Theory of Operation            20 min. 
–  Considering loosely coupled coils 
–  Modeling resonant power transfer  
–  Magnetic link efficiency 
–  Topological analysis with SPICE and FEA 

•  Design Considerations            20 min. 
–  RX to TX communication 
–  Intelligent voltage positioning and load response 
–  EMI, efficiency/loss measurement 
–  Foreign object detection – eddy loss detection 
–  Single coil, 5 W WPC design example 



Notable Dates in Wireless Power Transfer 
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•  1820: Biot–Savart / André-Marie Ampère / H. Oersted discover and               
quantify relationship between electric current and magnetic fields 

 
•  1831: Michael Faraday / H. Hertz discover electromagnetic induction 

•  1834: Lenz (Lenz‘s law) à N. Callan invents the electrical transformer 

•  1864: James Clerk Maxwell synthesizes previous observations and                                             
mathematically models electromagnetic radiation  

•  1891-1917: Nicola Tesla – enormous contribution to the practical application of resonant  
power transfer and electromagnetic induction; numerous discoveries and patents 

	  
•  2007:  WiTricity research group, led by Professor Marin Soljacic  advances magnetic 

resonance to wirelessly power a 60 W light bulb with 40% efficiency at 2 m using          
60 cm-diameter coils 

•  2008/9: A consortium of companies called the Wireless Power Consortium (WPC) 
announces the evolution of a industry standard for low-power (5 W) inductive charging   
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E ∝1/r3, H ∝1/r2 E ∝1/r, H ∝1/r

E ∝1/r2, H ∝1/r3

ZO = 377 Ω,  
Plane Wave 

rc ⋅β

•  Field defined by antenna and distance from source 

•  Dipole(red) and loop(blue) antennas shown 

•  Wave impedance = E/H, converges at λ	  >>1	  

•  Reactive near field below  λ/2π	  is non-radiative 



Alliance for Wireless Power 
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Race for a Wireless Charging Standard 
Safety, Performance, Reliability and Interoperability 

Protocols Power  
Frequency Band 

Communication  
Frequency Band 

Range of 
Coupling 

Wireless Power Consortium 
(WPC) 105-205 kHz Same as power  

transfer band 0.4 to 0.7 

Powermat (PMA) 277-357 kHz Same as power  
transfer band 0.6 to 0.8 

Alliance for Wireless  
Power (A4WP) 6.78 MHz 2.4GHz ISM 

(ZigBee or BLE) 0.1 to 0.5 

Battery
Magnetic Shield

AC Magnetic
Flux

RX CoilRX Coil

TX CoilTX Coil

Magnetic (Ferrite) Shield

DC
Alignment

Magnet
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Safety Considerations 
Electromagnetic Radiation Effect 
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Frequency 
Range 

E-field  
(V/m) 

H-field  
(A/m) 

B-field 
 (µT) 

0.025-‐0.8	  kHz	   250/f	   4/f	   5000/f	  

0.15-‐1	  MHz	   87	   0.73/f	   0.92/f	  
1-‐10	  MHz	   87/f^0.5	   0.73/f	   0.92/f	  
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Theory of Operation 
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Loosely Coupled Coils 
Self and Mutual Inductance 
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Power Transfer, Wired and Wireless 
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Considering Resonance 

3dB

fr = 1/ 2π LC
Q =

fr
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Coil Skin and Proximity Losses 
(Eddy Induced Losses) 

Rpac =
ωLp
Qp Rsac =

ωLs
Qs
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Typical WPC TX/RX Coil Q and 
Skin/Proximity Effect 

RX: 
40 x 30 mm with shield 
Litz wire, 2 strands 
14 turns, 1 layer 
Q = 2.3 @ 130 kHz 
Rac = 515 mΩ @ 130 kHz 

TX:  
43 mm diameter with shield 
Litz wire, 105 strand 
20 turns, 2 layers 
Q = 100 @ 130 kHz 
Rac = 176 mΩ 
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Primary Current vs. Frequency  
and Coupling Coefficient 
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Coupling Efficiency 

Coupling Efficiency in Relationship to  
Coil Separation (z) and the Ratio of Coil Diameters 

Coil Vertical Displacement z/(D), Normalized 
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Magnetic Figure of Merit 
F(k,Q) 
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•  Q = geometric mean of coil 
quality factors =  

 
•  Q  influenced strongly by skin 

and proximity effect 

•  High Q compensates for  
poor coupling 

•  High Q requires greater 
control bandwidth 

Qp ×Qs

30 mm Planar Coils 
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Coupling Coefficient and 
Mutual Inductance from Transfer Gain 
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k =
Lrx

Ltx
•
Vtx

Vrx
=
Gain

Lrx

Ltx

Ltx = 25 µH
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Intelligent WPT 
Digital Power, Resonant Battery Charger 
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•  A transmitter (TX)  driving a resonant coupled inductor 

•  A receiver (RX) with rectification, load modulation and post regulation 

•  A load, commonly a single cell, secondary battery pack 



Resonant Circuit Analysis 
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•  VG1 is a variable 
frequency AC signal in 
frequency domain 

•  VG1 is a 50% duty cycle, 
19 V square wave in the 
time domain 

•  Power regulated by 
changing the frequency 
or voltage 
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Examining Circuit Behavior in SPICE 
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2-D FEA Plot of Magnetic Flux 
Between TX/RX Coils 
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•  Receiver side shielding is important 

•  Poorly designed shields expose battery and external circuits to magnetic field 

•  AC/DC winding losses of TX/RX coils correspond with empirical results = 0.32 W 

Ferrite Shield (TX) 

Litz Coil (RX) 

Ferrite Shield (RX) Aluminum (Battery or Internals) 

Litz Coil (TX) 

Axisymmetric FEA Evaluated in FEMM 
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Quantifying Losses – Typical 5 W 
Wireless Power Transmitter/Receiver 

η =
POUT

POUT + PRX + PTX

PTX = PTXcoil + PBridge + Pcontrol + PDC−DC PRX = PRXcoil+ Prectifier+ PIdo + Pcomm
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Design Considerations, WPC 

•  Feedback communication 

•  Loop response 

•  Foreign object detection 

•  Electromagnetic compatibility 

•  System efficiency 



3-23 Texas Instruments – 2014/15 Power Supply Design Seminar   

WPC 1.1 Compliant 
5 W TX Reference Design 
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Qi Power Transfer  
Communication Protocol 

•  TX generates a shared magnetic field 
-  TX coil creates magnetic field 
-  Magnetic field induces current in RX coil 
 

•  Communication in power field 

-  TX waits until its field perturbed by RX 

-  TX sends seek energy “ping”  

-  TX waits for a digital response 

-  If digital response is valid, transfer power 
 

•  Power transferred at level needed 

-  RX reports power received/needed 

-  TX adjusts power based on RX feedback 

-  If feedback is lost, power transfer stops 
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WPC RX Load Modulation 

Integrated Transmitter IC Integrated Receiver IC 
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Measurement 

•  Power transfer waveforms 
-  Coil resonance 
-  Harmonic content 

•  Load response 

•  Efficiency –  

-  Loss contributors 
-  PCB coil vs. Litz 

•  RX/TX communication 

•  EMI, FOD 

•  Spatial freedom 
VNA – Bode 100 – Coil gain/impedance characteristics 
 
MDO4104 – Mixed domain oscilloscope  
 
Differential voltage probe capable of > 40 V, current probe, 
IR probe 
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Reference Design Waveforms at 5 W 
Time and Spectrum Domain 

Misaligned coils force  
operation closer to resonance 
Vpp_tx = 40 V, fSW = 135 kHz   

RMS gain = 0.509 

Centered coils force operation 
further from resonance  

Vpp_tx = 20 V, fSW = 170 kHz  
RMS gain = 0.56 

TX 

TX Coil Harmonics TX Coil Harmonics 

RX TX 
RX 
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Intelligent Voltage Positioning 

Maximum data rate package during transition 

240 ms 

Dynamic Voltage Positioning 

Load current step = 250 mA-0 A 
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Transient Load Response 
IOUT = 0 to 1 A 

5 V TX Supply Current	  

12 V TX Supply Current	  

Voltage Response	  

WPC Wireless Power RX 
Phone “Skin”	  
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Transient Load Step Response 
Litz TX Coil / PCB RX Coil 

0 to 250 mA load step at ~ 1 A/µs 

bq51013B based RX design 
2.65 in x 1.35 in x 0.02 in 

45 mm TX coil with shield 
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System Efficiency – DC Input to DC Output 
PCB Coil vs. 105 Strand Litz Coil 
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Designing for Spatial Freedom 
Efficiency Across Charging Area 

•  Efficiency map at a 5 W load measured over the PCB coil area 
•  +/- 40 mm in x-direction and 30 mm in y-direction, 5 mm steps 
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15 

0.00% 0.00% 48.78% 51.77% 50.32% 45.38% 46.91% 50.38% 51.84% 50.05% 45.21% 46.49% 51.92% 52.46% 48.58% 0.00% 0.00% 
10 

0.00% 43.71% 51.37% 53.92% 52.23% 47.34% 52.23% 55.30% 56.12% 55.44% 51.05% 49.32% 53.11% 53.84% 51.24% 44.16% 0.00% 
5 

0.00% 44.74% 52.23% 54.55% 52.69% 48.95% 53.64% 56.73% 57.54% 56.72% 52.95% 49.69% 53.59% 54.54% 51.75% 45.64% 0.00% 
0 

0.00% 43.99% 51.58% 53.85% 52.56% 47.95% 51.06% 54.79% 55.37% 55.00% 50.74% 49.44% 53.06% 53.63% 50.99% 44.34% 0.00% 
-5 

0.00% 41.57% 49.44% 52.08% 50.50% 45.28% 46.08% 50.08% 51.84% 50.23% 44.44% 46.61% 50.05% 51.68% 48.26% 0.00% 0.00% 
-10 

0.00% 0.00% 42.12% 44.93% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 45.00% 44.81% 0.00% 0.00% 0.00% 
-15 

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 (mm) 
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Design for Electromagnetic Compatibility 

Optimized for EMC Non-Optimized Performance 

 GND Plane Under TX Coil TX Conductive Enclosure

Wireless
Receiver

Wireless
Transmitter

Common Mode Filter

Multilayer Electric Shield
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Foreign Object Detection 
•  Depending on specific heat capacity, 

foreign object temp rise can be > 60°C 

•  Battery pack is especially sensitive 

Where: 
→  P = Power dissipated in FO 
→  C = FO specific heat capacity 
→  M = FO mass 
→  t = time 
 

•  Metal objects between TX and RX can 
induce eddy current losses 

•  Field density of 5 W wireless chargers can 
result in significant eddy losses 

ΔT= P× t
C×m
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Dynamic RX / TX Loss Accounting 

45 mm FO placed adjacent 
to misaligned TX coil  

TX & RX account for losses 

Loss threshold set high 

FO removed 

FO placed next to TX coil, 
losses increase by > 1 W 

FOD reaches 55 C 
in under 60 s 

Transmit & Receive Power (mW) 

Loss vs. Threashold (mW) 

min:sec 

min:sec 
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A Vision for Wireless Power Transfer 
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Summary 

•  Market studies project rapid growth in wireless power technology 

•  Wireless power transfer is useful when a wired solution is inconvenient, 
hazardous or impossible 

•  WPT standards have emerged to accelerate growth, reliability, acceptance 
and safety in consumer electronics 

•  Developing a wireless power solution does not require compliance to any 
standard other than those affecting consumer safety and EMC 

 
•  Standard compliance may provide advantages in marketability 

(interoperability), performance, reliability and time to market 
 
•  Achieving spatial freedom and good efficiency requires a deep 

understanding of magnetic field theory 
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